Let’s define some vectors which can be used for demonstrations:
manyNumbers <- sample( 1:1000, 20 )
manyNumbers
[1] 734 99 847 203 695 259 871 87 211 52 998 945 889 594 509 18 21 106 796 391
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
[1] 99 203 NA 21 52 106 211 734 847 NA NA 259 889 391 945 87 998 695 871 509 18 796 594
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
[1] 5 5 1 1 2 1 5 3 5 2
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x"
[25] "y" "z"
LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X"
[25] "Y" "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
[1] "c" "a" "p" "q" "i" "J" "W" "H" "Y" "L"
manyNumbersWithNA
instead of manyNumbers
.all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE
Input: logical vector Output: vector of numbers (positions)
which( manyNumbers > 900 )
[1] 11 12
which( manyNumbersWithNA > 900 )
[1] 15 17
which( is.na( manyNumbersWithNA ) )
[1] 3 10 11
manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
[1] 998 945
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
[1] 998 945
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
[1] 998 945
"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "J" "W" "H" "Y" "L"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "c" "a" "p" "q" "i"
manyNumbers %in% 300:600
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[17] FALSE FALSE FALSE TRUE
which( manyNumbers %in% 300:600 )
[1] 14 15 20
sum( manyNumbers %in% 300:600 )
[1] 3
NA
sif_else( manyNumbersWithNA >= 500, "large", "small" )
[1] "small" "small" NA "small" "small" "small" "small" "large" "large" NA NA "small"
[13] "large" "small" "large" "small" "large" "large" "large" "large" "small" "large" "large"
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
[1] "small" "small" "UNKNOWN" "small" "small" "small" "small" "large" "large"
[10] "UNKNOWN" "UNKNOWN" "small" "large" "small" "large" "small" "large" "large"
[19] "large" "large" "small" "large" "large"
# here integer 0L is needed instead of real 0.0
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L )
[1] 0 0 NA 0 0 0 0 734 847 NA NA 0 889 0 945 0 998 695 871 509 0 796 594
unique( duplicatedNumbers )
[1] 5 1 2 3
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA 5 1 2 3
duplicated( duplicatedNumbers )
[1] FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
which.max( manyNumbersWithNA )
[1] 17
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 998
which.min( manyNumbersWithNA )
[1] 21
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 18
range( manyNumbersWithNA, na.rm = TRUE )
[1] 18 998
manyNumbersWithNA
[1] 99 203 NA 21 52 106 211 734 847 NA NA 259 889 391 945 87 998 695 871 509 18 796 594
sort( manyNumbersWithNA )
[1] 18 21 52 87 99 106 203 211 259 391 509 594 695 734 796 847 871 889 945 998
sort( manyNumbersWithNA, na.last = TRUE )
[1] 18 21 52 87 99 106 203 211 259 391 509 594 695 734 796 847 871 889 945 998 NA NA NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
[1] 998 945 889 871 847 796 734 695 594 509 391 259 211 203 106 99 87 52 21 18 NA NA NA
manyNumbersWithNA[1:5]
[1] 99 203 NA 21 52
order( manyNumbersWithNA[1:5] )
[1] 4 5 1 2 3
rank( manyNumbersWithNA[1:5] )
[1] 3 4 5 1 2
sort( mixedLetters )
[1] "a" "c" "H" "i" "J" "L" "p" "q" "W" "Y"
manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
[1] 4.5 10.0 1.5 6.0 3.0 8.0 8.0 1.5 8.0 4.5
rank( manyDuplicates, ties.method = "min" )
[1] 4 10 1 6 3 7 7 1 7 4
rank( manyDuplicates, ties.method = "random" )
[1] 4 10 1 6 3 9 8 2 7 5
v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
[1] -1.0000000 -0.5000000 0.0000000 0.5000000 1.0000000 1.5968327 -0.6236429 -0.4301821
[9] 0.1527396 1.2952801 -0.1241376 0.8545873 -1.4958236 -1.2404464 -1.2228682
round( v, 0 )
[1] -1 0 0 0 1 2 -1 0 0 1 0 1 -1 -1 -1
round( v, 1 )
[1] -1.0 -0.5 0.0 0.5 1.0 1.6 -0.6 -0.4 0.2 1.3 -0.1 0.9 -1.5 -1.2 -1.2
round( v, 2 )
[1] -1.00 -0.50 0.00 0.50 1.00 1.60 -0.62 -0.43 0.15 1.30 -0.12 0.85 -1.50 -1.24 -1.22
floor( v )
[1] -1 -1 0 0 1 1 -1 -1 0 1 -1 0 -2 -2 -2
ceiling( v )
[1] -1 0 0 1 1 2 0 0 1 2 0 1 -1 -1 -1
heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob
166 170 177
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB
166 170 177
heights[[ "EVE" ]]
[1] 170
expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
x y
<int> <chr>
1 1 a
2 1 b
3 2 a
4 2 b
5 3 a
6 3 b
7 NA a
8 NA b
combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"
[2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "a" "a" "b" "b" "b" "c"
[2,] "b" "b" "b" "c" "c" "d" "c" "c" "d" "d"
[3,] "c" "d" "e" "d" "e" "e" "d" "e" "e" "e"
Copyright © 2023 Biomedical Data Sciences (BDS) | LUMC