Let’s define some vectors which can be used for demonstrations:
manyNumbers <- sample( 1:1000, 20 )
manyNumbers
[1] 517 986 85 829 144 108 536 644 348 81 17 507 42 979 155 91 280 301 585 949
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
[1] 507 NA 108 585 144 348 517 301 81 42 536 829 91 949 17 85 979 986 155 280 644 NA NA
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
[1] 4 2 5 2 5 2 2 3 2 5
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
[1] "o" "s" "u" "k" "g" "O" "L" "U" "R" "Z"
manyNumbersWithNA
instead of manyNumbers
.all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE
Input: logical vector Output: vector of numbers (positions)
which( manyNumbers > 900 )
[1] 2 14 20
which( manyNumbersWithNA > 900 )
[1] 14 17 18
which( is.na( manyNumbersWithNA ) )
[1] 2 22 23
manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
[1] 986 979 949
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
[1] 986 979 949
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
[1] 986 979 949
"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "O" "L" "U" "R" "Z"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "o" "s" "u" "k" "g"
manyNumbers %in% 300:600
[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
which( manyNumbers %in% 300:600 )
[1] 1 7 9 12 18 19
sum( manyNumbers %in% 300:600 )
[1] 6
NA
sif_else( manyNumbersWithNA >= 500, "large", "small" )
[1] "large" NA "small" "large" "small" "small" "large" "small" "small" "small" "large" "large" "small" "large" "small" "small" "large" "large" "small" "small"
[21] "large" NA NA
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
[1] "large" "UNKNOWN" "small" "large" "small" "small" "large" "small" "small" "small" "large" "large" "small" "large" "small" "small"
[17] "large" "large" "small" "small" "large" "UNKNOWN" "UNKNOWN"
# here integer 0L is needed instead of real 0.0
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L )
[1] 507 NA 0 585 0 0 517 0 0 0 536 829 0 949 0 0 979 986 0 0 644 NA NA
unique( duplicatedNumbers )
[1] 4 2 5 3
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA 4 2 5 3
duplicated( duplicatedNumbers )
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
which.max( manyNumbersWithNA )
[1] 18
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 986
which.min( manyNumbersWithNA )
[1] 15
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 17
range( manyNumbersWithNA, na.rm = TRUE )
[1] 17 986
manyNumbersWithNA
[1] 507 NA 108 585 144 348 517 301 81 42 536 829 91 949 17 85 979 986 155 280 644 NA NA
sort( manyNumbersWithNA )
[1] 17 42 81 85 91 108 144 155 280 301 348 507 517 536 585 644 829 949 979 986
sort( manyNumbersWithNA, na.last = TRUE )
[1] 17 42 81 85 91 108 144 155 280 301 348 507 517 536 585 644 829 949 979 986 NA NA NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
[1] 986 979 949 829 644 585 536 517 507 348 301 280 155 144 108 91 85 81 42 17 NA NA NA
manyNumbersWithNA[1:5]
[1] 507 NA 108 585 144
order( manyNumbersWithNA[1:5] )
[1] 3 5 1 4 2
rank( manyNumbersWithNA[1:5] )
[1] 3 5 1 4 2
sort( mixedLetters )
[1] "g" "k" "L" "o" "O" "R" "s" "u" "U" "Z"
manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
[1] 1.5 4.0 1.5 7.0 7.0 4.0 10.0 7.0 4.0 9.0
rank( manyDuplicates, ties.method = "min" )
[1] 1 3 1 6 6 3 10 6 3 9
rank( manyDuplicates, ties.method = "random" )
[1] 2 5 1 8 7 4 10 6 3 9
v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
[1] -1.00000000 -0.50000000 0.00000000 0.50000000 1.00000000 0.14869382 -1.39818942 -0.06505665 0.83037541 1.75082107 1.42230791 1.17252215 -1.44468445
[14] -0.71492889 -0.36219210
round( v, 0 )
[1] -1 0 0 0 1 0 -1 0 1 2 1 1 -1 -1 0
round( v, 1 )
[1] -1.0 -0.5 0.0 0.5 1.0 0.1 -1.4 -0.1 0.8 1.8 1.4 1.2 -1.4 -0.7 -0.4
round( v, 2 )
[1] -1.00 -0.50 0.00 0.50 1.00 0.15 -1.40 -0.07 0.83 1.75 1.42 1.17 -1.44 -0.71 -0.36
floor( v )
[1] -1 -1 0 0 1 0 -2 -1 0 1 1 1 -2 -1 -1
ceiling( v )
[1] -1 0 0 1 1 1 -1 0 1 2 2 2 -1 0 0
heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob
166 170 177
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB
166 170 177
heights[[ "EVE" ]]
[1] 170
expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
x y
<int> <chr>
1 1 a
2 1 b
3 2 a
4 2 b
5 3 a
6 3 b
7 NA a
8 NA b
combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"
[2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "a" "a" "b" "b" "b" "c"
[2,] "b" "b" "b" "c" "c" "d" "c" "c" "d" "d"
[3,] "c" "d" "e" "d" "e" "e" "d" "e" "e" "e"
Copyright © 2024 Biomedical Data Sciences (BDS) | LUMC