Sandbox vectors

Let’s define some vectors which can be used for demonstrations:

manyNumbers <- sample( 1:1000, 20 )
manyNumbers
 [1] 462 264 331 595 219 153 796 675 710 912 440  26 367 940 426 554 373 239 576 420
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
 [1] 239 554 153 912 367 420 264 373 710 219  NA 595 940 576  NA 675 426 462  26 331 796  NA 440
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
 [1] 5 1 5 2 5 2 1 2 4 3
letters
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
 [1] "d" "g" "z" "t" "v" "J" "X" "S" "T" "C"

Are all/any elements TRUE

all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE

Which elements are TRUE

Input: logical vector Output: vector of numbers (positions)

which( manyNumbers > 900 )
[1] 10 14
which( manyNumbersWithNA > 900 )
[1]  4 13
which( is.na( manyNumbersWithNA ) )
[1] 11 15 22

Filtering vector elements

manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
[1] 912 940
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
[1] 912 940
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
[1] 912 940

Are some elements among other elements

"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "J" "X" "S" "T" "C"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "d" "g" "z" "t" "v"
manyNumbers %in% 300:600
 [1]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
which( manyNumbers %in% 300:600 )
 [1]  1  3  4 11 13 15 16 17 19 20
sum( manyNumbers %in% 300:600 )
[1] 10

Pick one of two (three) depending on condition

if_else( manyNumbersWithNA >= 500, "large", "small" )
 [1] "small" "large" "small" "large" "small" "small" "small" "small" "large" "small" NA      "large" "large" "large" NA      "large" "small" "small" "small" "small"
[21] "large" NA      "small"
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
 [1] "small"   "large"   "small"   "large"   "small"   "small"   "small"   "small"   "large"   "small"   "UNKNOWN" "large"   "large"   "large"   "UNKNOWN" "large"  
[17] "small"   "small"   "small"   "small"   "large"   "UNKNOWN" "small"  
# here integer 0L is needed instead of real 0.0 
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L ) 
 [1]   0 554   0 912   0   0   0   0 710   0  NA 595 940 576  NA 675   0   0   0   0 796  NA   0

Duplicates and unique elements

unique( duplicatedNumbers )
[1] 5 1 2 4 3
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA  5  1  2  4  3
duplicated( duplicatedNumbers )
 [1] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE

Positions of max/min elements

which.max( manyNumbersWithNA )
[1] 13
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 940
which.min( manyNumbersWithNA )
[1] 19
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 26
range( manyNumbersWithNA, na.rm = TRUE )
[1]  26 940

Sorting/ordering of vectors

manyNumbersWithNA
 [1] 239 554 153 912 367 420 264 373 710 219  NA 595 940 576  NA 675 426 462  26 331 796  NA 440
sort( manyNumbersWithNA )
 [1]  26 153 219 239 264 331 367 373 420 426 440 462 554 576 595 675 710 796 912 940
sort( manyNumbersWithNA, na.last = TRUE )
 [1]  26 153 219 239 264 331 367 373 420 426 440 462 554 576 595 675 710 796 912 940  NA  NA  NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
 [1] 940 912 796 710 675 595 576 554 462 440 426 420 373 367 331 264 239 219 153  26  NA  NA  NA
manyNumbersWithNA[1:5]
[1] 239 554 153 912 367
order( manyNumbersWithNA[1:5] )
[1] 3 1 5 2 4
rank( manyNumbersWithNA[1:5] )
[1] 2 4 1 5 3
sort( mixedLetters )
 [1] "C" "d" "g" "J" "S" "t" "T" "v" "X" "z"

Ranking of vectors

manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
 [1] 3.5 6.0 9.5 7.5 7.5 5.0 3.5 9.5 1.5 1.5
rank( manyDuplicates, ties.method = "min" )
 [1] 3 6 9 7 7 5 3 9 1 1
rank( manyDuplicates, ties.method = "random" )
 [1]  3  6  9  8  7  5  4 10  2  1

Rounding numbers

v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
 [1] -1.0000000 -0.5000000  0.0000000  0.5000000  1.0000000 -2.0830695 -1.0206006 -1.0683954  0.6300673 -1.5662845  2.6260376 -0.5703566 -0.9490789 -1.1015691
[15] -0.5448783
round( v, 0 )
 [1] -1  0  0  0  1 -2 -1 -1  1 -2  3 -1 -1 -1 -1
round( v, 1 )
 [1] -1.0 -0.5  0.0  0.5  1.0 -2.1 -1.0 -1.1  0.6 -1.6  2.6 -0.6 -0.9 -1.1 -0.5
round( v, 2 )
 [1] -1.00 -0.50  0.00  0.50  1.00 -2.08 -1.02 -1.07  0.63 -1.57  2.63 -0.57 -0.95 -1.10 -0.54
floor( v )
 [1] -1 -1  0  0  1 -3 -2 -2  0 -2  2 -1 -1 -2 -1
ceiling( v )
 [1] -1  0  0  1  1 -2 -1 -1  1 -1  3  0  0 -1  0

Naming vector elements

heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob 
166 170 177 
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB 
166 170 177 
heights[[ "EVE" ]]
[1] 170

Generating grids

expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
      x y    
  <int> <chr>
1     1 a    
2     1 b    
3     2 a    
4     2 b    
5     3 a    
6     3 b    
7    NA a    
8    NA b    

Generating combinations

combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a"  "a"  "a"  "a"  "b"  "b"  "b"  "c"  "c"  "d"  
[2,] "b"  "c"  "d"  "e"  "c"  "d"  "e"  "d"  "e"  "e"  
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a"  "a"  "a"  "a"  "a"  "a"  "b"  "b"  "b"  "c"  
[2,] "b"  "b"  "b"  "c"  "c"  "d"  "c"  "c"  "d"  "d"  
[3,] "c"  "d"  "e"  "d"  "e"  "e"  "d"  "e"  "e"  "e"  


Copyright © 2024 Biomedical Data Sciences (BDS) | LUMC