Let’s define some vectors which can be used for demonstrations:
manyNumbers <- sample( 1:1000, 20 )
manyNumbers
[1] 462 264 331 595 219 153 796 675 710 912 440 26 367 940 426 554 373 239 576 420
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
[1] 239 554 153 912 367 420 264 373 710 219 NA 595 940 576 NA 675 426 462 26 331 796 NA 440
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
[1] 5 1 5 2 5 2 1 2 4 3
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
[1] "d" "g" "z" "t" "v" "J" "X" "S" "T" "C"
manyNumbersWithNA
instead of manyNumbers
.all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE
Input: logical vector Output: vector of numbers (positions)
which( manyNumbers > 900 )
[1] 10 14
which( manyNumbersWithNA > 900 )
[1] 4 13
which( is.na( manyNumbersWithNA ) )
[1] 11 15 22
manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
[1] 912 940
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
[1] 912 940
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
[1] 912 940
"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "J" "X" "S" "T" "C"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "d" "g" "z" "t" "v"
manyNumbers %in% 300:600
[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
which( manyNumbers %in% 300:600 )
[1] 1 3 4 11 13 15 16 17 19 20
sum( manyNumbers %in% 300:600 )
[1] 10
NA
sif_else( manyNumbersWithNA >= 500, "large", "small" )
[1] "small" "large" "small" "large" "small" "small" "small" "small" "large" "small" NA "large" "large" "large" NA "large" "small" "small" "small" "small"
[21] "large" NA "small"
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
[1] "small" "large" "small" "large" "small" "small" "small" "small" "large" "small" "UNKNOWN" "large" "large" "large" "UNKNOWN" "large"
[17] "small" "small" "small" "small" "large" "UNKNOWN" "small"
# here integer 0L is needed instead of real 0.0
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L )
[1] 0 554 0 912 0 0 0 0 710 0 NA 595 940 576 NA 675 0 0 0 0 796 NA 0
unique( duplicatedNumbers )
[1] 5 1 2 4 3
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA 5 1 2 4 3
duplicated( duplicatedNumbers )
[1] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
which.max( manyNumbersWithNA )
[1] 13
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 940
which.min( manyNumbersWithNA )
[1] 19
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 26
range( manyNumbersWithNA, na.rm = TRUE )
[1] 26 940
manyNumbersWithNA
[1] 239 554 153 912 367 420 264 373 710 219 NA 595 940 576 NA 675 426 462 26 331 796 NA 440
sort( manyNumbersWithNA )
[1] 26 153 219 239 264 331 367 373 420 426 440 462 554 576 595 675 710 796 912 940
sort( manyNumbersWithNA, na.last = TRUE )
[1] 26 153 219 239 264 331 367 373 420 426 440 462 554 576 595 675 710 796 912 940 NA NA NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
[1] 940 912 796 710 675 595 576 554 462 440 426 420 373 367 331 264 239 219 153 26 NA NA NA
manyNumbersWithNA[1:5]
[1] 239 554 153 912 367
order( manyNumbersWithNA[1:5] )
[1] 3 1 5 2 4
rank( manyNumbersWithNA[1:5] )
[1] 2 4 1 5 3
sort( mixedLetters )
[1] "C" "d" "g" "J" "S" "t" "T" "v" "X" "z"
manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
[1] 3.5 6.0 9.5 7.5 7.5 5.0 3.5 9.5 1.5 1.5
rank( manyDuplicates, ties.method = "min" )
[1] 3 6 9 7 7 5 3 9 1 1
rank( manyDuplicates, ties.method = "random" )
[1] 3 6 9 8 7 5 4 10 2 1
v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
[1] -1.0000000 -0.5000000 0.0000000 0.5000000 1.0000000 -2.0830695 -1.0206006 -1.0683954 0.6300673 -1.5662845 2.6260376 -0.5703566 -0.9490789 -1.1015691
[15] -0.5448783
round( v, 0 )
[1] -1 0 0 0 1 -2 -1 -1 1 -2 3 -1 -1 -1 -1
round( v, 1 )
[1] -1.0 -0.5 0.0 0.5 1.0 -2.1 -1.0 -1.1 0.6 -1.6 2.6 -0.6 -0.9 -1.1 -0.5
round( v, 2 )
[1] -1.00 -0.50 0.00 0.50 1.00 -2.08 -1.02 -1.07 0.63 -1.57 2.63 -0.57 -0.95 -1.10 -0.54
floor( v )
[1] -1 -1 0 0 1 -3 -2 -2 0 -2 2 -1 -1 -2 -1
ceiling( v )
[1] -1 0 0 1 1 -2 -1 -1 1 -1 3 0 0 -1 0
heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob
166 170 177
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB
166 170 177
heights[[ "EVE" ]]
[1] 170
expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
x y
<int> <chr>
1 1 a
2 1 b
3 2 a
4 2 b
5 3 a
6 3 b
7 NA a
8 NA b
combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"
[2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "a" "a" "b" "b" "b" "c"
[2,] "b" "b" "b" "c" "c" "d" "c" "c" "d" "d"
[3,] "c" "d" "e" "d" "e" "e" "d" "e" "e" "e"
Copyright © 2024 Biomedical Data Sciences (BDS) | LUMC