Let’s define some vectors which can be used for demonstrations:
manyNumbers <- sample( 1:1000, 20 )
manyNumbers
[1] 323 997 766 273 974 894 789 585 875 723 278 882 378 841 855 827 115 725 29 690
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
[1] 789 NA 585 273 882 723 997 115 323 974 278 827 725 855 875 NA 378 690 NA 894 29 841 766
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
[1] 1 5 4 3 3 1 1 3 4 4
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y"
[26] "z"
LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y"
[26] "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
[1] "e" "w" "f" "y" "n" "B" "M" "W" "F" "J"
manyNumbersWithNA
instead of manyNumbers
.all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE
Input: logical vector Output: vector of numbers (positions)
which( manyNumbers > 900 )
[1] 2 5
which( manyNumbersWithNA > 900 )
[1] 7 10
which( is.na( manyNumbersWithNA ) )
[1] 2 16 19
manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
[1] 997 974
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
[1] 997 974
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
[1] 997 974
"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "B" "M" "W" "F" "J"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "e" "w" "f" "y" "n"
manyNumbers %in% 300:600
[1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[17] FALSE FALSE FALSE FALSE
which( manyNumbers %in% 300:600 )
[1] 1 8 13
sum( manyNumbers %in% 300:600 )
[1] 3
NA
sif_else( manyNumbersWithNA >= 500, "large", "small" )
[1] "large" NA "large" "small" "large" "large" "large" "small" "small" "large" "small" "large"
[13] "large" "large" "large" NA "small" "large" NA "large" "small" "large" "large"
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
[1] "large" "UNKNOWN" "large" "small" "large" "large" "large" "small" "small" "large"
[11] "small" "large" "large" "large" "large" "UNKNOWN" "small" "large" "UNKNOWN" "large"
[21] "small" "large" "large"
# here integer 0L is needed instead of real 0.0
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L )
[1] 789 NA 585 0 882 723 997 0 0 974 0 827 725 855 875 NA 0 690 NA 894 0 841 766
unique( duplicatedNumbers )
[1] 1 5 4 3
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA 1 5 4 3
duplicated( duplicatedNumbers )
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
which.max( manyNumbersWithNA )
[1] 7
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 997
which.min( manyNumbersWithNA )
[1] 21
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 29
range( manyNumbersWithNA, na.rm = TRUE )
[1] 29 997
manyNumbersWithNA
[1] 789 NA 585 273 882 723 997 115 323 974 278 827 725 855 875 NA 378 690 NA 894 29 841 766
sort( manyNumbersWithNA )
[1] 29 115 273 278 323 378 585 690 723 725 766 789 827 841 855 875 882 894 974 997
sort( manyNumbersWithNA, na.last = TRUE )
[1] 29 115 273 278 323 378 585 690 723 725 766 789 827 841 855 875 882 894 974 997 NA NA NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
[1] 997 974 894 882 875 855 841 827 789 766 725 723 690 585 378 323 278 273 115 29 NA NA NA
manyNumbersWithNA[1:5]
[1] 789 NA 585 273 882
order( manyNumbersWithNA[1:5] )
[1] 4 3 1 5 2
rank( manyNumbersWithNA[1:5] )
[1] 3 5 2 1 4
sort( mixedLetters )
[1] "B" "e" "f" "F" "J" "M" "n" "w" "W" "y"
manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
[1] 5.0 5.0 2.5 9.5 8.0 1.0 9.5 2.5 7.0 5.0
rank( manyDuplicates, ties.method = "min" )
[1] 4 4 2 9 8 1 9 2 7 4
rank( manyDuplicates, ties.method = "random" )
[1] 4 6 3 10 8 1 9 2 7 5
v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
[1] -1.00000000 -0.50000000 0.00000000 0.50000000 1.00000000 1.18911570 0.76433325 -0.05749139
[9] -0.04093436 0.27395466 0.22768011 1.21741908 0.11781890 -0.65522947 -0.48961966
round( v, 0 )
[1] -1 0 0 0 1 1 1 0 0 0 0 1 0 -1 0
round( v, 1 )
[1] -1.0 -0.5 0.0 0.5 1.0 1.2 0.8 -0.1 0.0 0.3 0.2 1.2 0.1 -0.7 -0.5
round( v, 2 )
[1] -1.00 -0.50 0.00 0.50 1.00 1.19 0.76 -0.06 -0.04 0.27 0.23 1.22 0.12 -0.66 -0.49
floor( v )
[1] -1 -1 0 0 1 1 0 -1 -1 0 0 1 0 -1 -1
ceiling( v )
[1] -1 0 0 1 1 2 1 0 0 1 1 2 1 0 0
heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob
166 170 177
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB
166 170 177
heights[[ "EVE" ]]
[1] 170
expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
x y
<int> <chr>
1 1 a
2 1 b
3 2 a
4 2 b
5 3 a
6 3 b
7 NA a
8 NA b
combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"
[2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "a" "a" "b" "b" "b" "c"
[2,] "b" "b" "b" "c" "c" "d" "c" "c" "d" "d"
[3,] "c" "d" "e" "d" "e" "e" "d" "e" "e" "e"
Copyright © 2023 Biomedical Data Sciences (BDS) | LUMC