Let’s define some vectors which can be used for demonstrations:
manyNumbers <- sample( 1:1000, 20 )
manyNumbers
[1] 738 346 11 524 137 653 749 836 866 768 974 773 730 108 371 583 622 591 635 312
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
[1] 137 346 583 773 635 768 312 730 NA 371 524 591 653 622 974 108 836 738 866 NA 11 NA 749
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
[1] 3 2 4 1 2 2 5 5 5 4
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
[1] "u" "p" "s" "b" "r" "L" "P" "S" "T" "C"
manyNumbersWithNA
instead of manyNumbers
.all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE
Input: logical vector Output: vector of numbers (positions)
which( manyNumbers > 900 )
[1] 11
which( manyNumbersWithNA > 900 )
[1] 15
which( is.na( manyNumbersWithNA ) )
[1] 9 20 22
manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
[1] 974
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
[1] 974
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
[1] 974
"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "L" "P" "S" "T" "C"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "u" "p" "s" "b" "r"
manyNumbers %in% 300:600
[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
which( manyNumbers %in% 300:600 )
[1] 2 4 15 16 18 20
sum( manyNumbers %in% 300:600 )
[1] 6
NA
sif_else( manyNumbersWithNA >= 500, "large", "small" )
[1] "small" "small" "large" "large" "large" "large" "small" "large" NA "small" "large" "large" "large" "large" "large" "small" "large" "large" "large" NA
[21] "small" NA "large"
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
[1] "small" "small" "large" "large" "large" "large" "small" "large" "UNKNOWN" "small" "large" "large" "large" "large" "large" "small"
[17] "large" "large" "large" "UNKNOWN" "small" "UNKNOWN" "large"
# here integer 0L is needed instead of real 0.0
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L )
[1] 0 0 583 773 635 768 0 730 NA 0 524 591 653 622 974 0 836 738 866 NA 0 NA 749
unique( duplicatedNumbers )
[1] 3 2 4 1 5
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA 3 2 4 1 5
duplicated( duplicatedNumbers )
[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
which.max( manyNumbersWithNA )
[1] 15
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 974
which.min( manyNumbersWithNA )
[1] 21
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 11
range( manyNumbersWithNA, na.rm = TRUE )
[1] 11 974
manyNumbersWithNA
[1] 137 346 583 773 635 768 312 730 NA 371 524 591 653 622 974 108 836 738 866 NA 11 NA 749
sort( manyNumbersWithNA )
[1] 11 108 137 312 346 371 524 583 591 622 635 653 730 738 749 768 773 836 866 974
sort( manyNumbersWithNA, na.last = TRUE )
[1] 11 108 137 312 346 371 524 583 591 622 635 653 730 738 749 768 773 836 866 974 NA NA NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
[1] 974 866 836 773 768 749 738 730 653 635 622 591 583 524 371 346 312 137 108 11 NA NA NA
manyNumbersWithNA[1:5]
[1] 137 346 583 773 635
order( manyNumbersWithNA[1:5] )
[1] 1 2 3 5 4
rank( manyNumbersWithNA[1:5] )
[1] 1 2 3 5 4
sort( mixedLetters )
[1] "b" "C" "L" "p" "P" "r" "s" "S" "T" "u"
manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
[1] 10.0 1.5 1.5 4.5 8.0 8.0 4.5 4.5 4.5 8.0
rank( manyDuplicates, ties.method = "min" )
[1] 10 1 1 3 7 7 3 3 3 7
rank( manyDuplicates, ties.method = "random" )
[1] 10 2 1 6 8 7 4 3 5 9
v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
[1] -1.00000000 -0.50000000 0.00000000 0.50000000 1.00000000 -0.29324285 0.10914876 -0.61102468 1.09724206 -0.25761068 0.07025808 -0.35735040 1.17703080
[14] -0.26200981 0.29869547
round( v, 0 )
[1] -1 0 0 0 1 0 0 -1 1 0 0 0 1 0 0
round( v, 1 )
[1] -1.0 -0.5 0.0 0.5 1.0 -0.3 0.1 -0.6 1.1 -0.3 0.1 -0.4 1.2 -0.3 0.3
round( v, 2 )
[1] -1.00 -0.50 0.00 0.50 1.00 -0.29 0.11 -0.61 1.10 -0.26 0.07 -0.36 1.18 -0.26 0.30
floor( v )
[1] -1 -1 0 0 1 -1 0 -1 1 -1 0 -1 1 -1 0
ceiling( v )
[1] -1 0 0 1 1 0 1 0 2 0 1 0 2 0 1
heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob
166 170 177
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB
166 170 177
heights[[ "EVE" ]]
[1] 170
expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
x y
<int> <chr>
1 1 a
2 1 b
3 2 a
4 2 b
5 3 a
6 3 b
7 NA a
8 NA b
combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"
[2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "a" "a" "b" "b" "b" "c"
[2,] "b" "b" "b" "c" "c" "d" "c" "c" "d" "d"
[3,] "c" "d" "e" "d" "e" "e" "d" "e" "e" "e"
Copyright © 2023 Biomedical Data Sciences (BDS) | LUMC