Let’s define some vectors which can be used for demonstrations:
manyNumbers <- sample( 1:1000, 20 )
manyNumbers
[1] 297 418 381 669 152 780 53 310 652 823 584 395 718 192 814 828 742 847 338 426
manyNumbersWithNA <- sample( c( NA, NA, NA, manyNumbers ) )
manyNumbersWithNA
[1] 584 NA 718 426 NA 847 53 669 814 310 395 NA 152 828 297 823 652 338 192 381 780 418 742
duplicatedNumbers <- sample( 1:5, 10, replace = TRUE )
duplicatedNumbers
[1] 4 3 3 2 4 2 1 4 5 2
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
mixedLetters <- c( sample( letters, 5 ), sample( LETTERS, 5 ) )
mixedLetters
[1] "t" "i" "n" "u" "h" "W" "X" "M" "P" "F"
manyNumbersWithNA
instead of manyNumbers
.all( manyNumbers <= 1000 )
[1] TRUE
all( manyNumbers <= 500 )
[1] FALSE
any( manyNumbers > 1000 )
[1] FALSE
any( manyNumbers > 500 )
[1] TRUE
all( !is.na( manyNumbers ) )
[1] TRUE
any( is.na( manyNumbers ) )
[1] FALSE
Input: logical vector Output: vector of numbers (positions)
which( manyNumbers > 900 )
integer(0)
which( manyNumbersWithNA > 900 )
integer(0)
which( is.na( manyNumbersWithNA ) )
[1] 2 5 12
manyNumbers[ manyNumbers > 900 ] # indexing by logical vector
integer(0)
manyNumbers[ which( manyNumbers > 900 ) ] # indexing by positions
integer(0)
somePositions <- which( manyNumbers > 900 )
manyNumbers[ somePositions ]
integer(0)
"A" %in% LETTERS
[1] TRUE
c( "X", "Y", "Z" ) %in% LETTERS
[1] TRUE TRUE TRUE
all( c( "X", "Y", "Z" ) %in% LETTERS )
[1] TRUE
all( mixedLetters %in% LETTERS )
[1] FALSE
any( mixedLetters %in% LETTERS )
[1] TRUE
mixedLetters[ mixedLetters %in% LETTERS ]
[1] "W" "X" "M" "P" "F"
mixedLetters[ !( mixedLetters %in% LETTERS ) ]
[1] "t" "i" "n" "u" "h"
manyNumbers %in% 300:600
[1] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
which( manyNumbers %in% 300:600 )
[1] 2 3 8 11 12 19 20
sum( manyNumbers %in% 300:600 )
[1] 7
NA
sif_else( manyNumbersWithNA >= 500, "large", "small" )
[1] "large" NA "large" "small" NA "large" "small" "large" "large" "small" "small" NA "small" "large" "small" "large"
[17] "large" "small" "small" "small" "large" "small" "large"
if_else( manyNumbersWithNA >= 500, "large", "small", "UNKNOWN" )
[1] "large" "UNKNOWN" "large" "small" "UNKNOWN" "large" "small" "large" "large" "small" "small" "UNKNOWN"
[13] "small" "large" "small" "large" "large" "small" "small" "small" "large" "small" "large"
# here integer 0L is needed instead of real 0.0
# manyNumbersWithNA contains integer numbers and the method complains
if_else( manyNumbersWithNA >= 500, manyNumbersWithNA, 0L )
[1] 584 NA 718 0 NA 847 0 669 814 0 0 NA 0 828 0 823 652 0 0 0 780 0 742
unique( duplicatedNumbers )
[1] 4 3 2 1 5
unique( c( NA, duplicatedNumbers, NA ) )
[1] NA 4 3 2 1 5
duplicated( duplicatedNumbers )
[1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
which.max( manyNumbersWithNA )
[1] 6
manyNumbersWithNA[ which.max( manyNumbersWithNA ) ]
[1] 847
which.min( manyNumbersWithNA )
[1] 7
manyNumbersWithNA[ which.min( manyNumbersWithNA ) ]
[1] 53
range( manyNumbersWithNA, na.rm = TRUE )
[1] 53 847
manyNumbersWithNA
[1] 584 NA 718 426 NA 847 53 669 814 310 395 NA 152 828 297 823 652 338 192 381 780 418 742
sort( manyNumbersWithNA )
[1] 53 152 192 297 310 338 381 395 418 426 584 652 669 718 742 780 814 823 828 847
sort( manyNumbersWithNA, na.last = TRUE )
[1] 53 152 192 297 310 338 381 395 418 426 584 652 669 718 742 780 814 823 828 847 NA NA NA
sort( manyNumbersWithNA, na.last = TRUE, decreasing = TRUE )
[1] 847 828 823 814 780 742 718 669 652 584 426 418 395 381 338 310 297 192 152 53 NA NA NA
manyNumbersWithNA[1:5]
[1] 584 NA 718 426 NA
order( manyNumbersWithNA[1:5] )
[1] 4 1 3 2 5
rank( manyNumbersWithNA[1:5] )
[1] 2 4 3 1 5
sort( mixedLetters )
[1] "F" "h" "i" "M" "n" "P" "t" "u" "W" "X"
manyDuplicates <- sample( 10:15, 10, replace = TRUE )
rank( manyDuplicates )
[1] 8.5 5.0 3.0 10.0 1.0 8.5 3.0 3.0 6.5 6.5
rank( manyDuplicates, ties.method = "min" )
[1] 8 5 2 10 1 8 2 2 6 6
rank( manyDuplicates, ties.method = "random" )
[1] 9 5 4 10 1 8 2 3 6 7
v <- c( -1, -0.5, 0, 0.5, 1, rnorm( 10 ) )
v
[1] -1.00000000 -0.50000000 0.00000000 0.50000000 1.00000000 0.43349143 0.23883635 -1.45709650 0.65440546 0.07343791
[11] 3.01517130 -1.34815822 -1.52177241 0.61025248 2.12930673
round( v, 0 )
[1] -1 0 0 0 1 0 0 -1 1 0 3 -1 -2 1 2
round( v, 1 )
[1] -1.0 -0.5 0.0 0.5 1.0 0.4 0.2 -1.5 0.7 0.1 3.0 -1.3 -1.5 0.6 2.1
round( v, 2 )
[1] -1.00 -0.50 0.00 0.50 1.00 0.43 0.24 -1.46 0.65 0.07 3.02 -1.35 -1.52 0.61 2.13
floor( v )
[1] -1 -1 0 0 1 0 0 -2 0 0 3 -2 -2 0 2
ceiling( v )
[1] -1 0 0 1 1 1 1 -1 1 1 4 -1 -1 1 3
heights <- c( Amy = 166, Eve = 170, Bob = 177 )
heights
Amy Eve Bob
166 170 177
names( heights )
[1] "Amy" "Eve" "Bob"
names( heights ) <- c( "AMY", "EVE", "BOB" )
heights
AMY EVE BOB
166 170 177
heights[[ "EVE" ]]
[1] 170
expand_grid( x = c( 1:3, NA ), y = c( "a", "b" ) )
# A tibble: 8 × 2
x y
<int> <chr>
1 1 a
2 1 b
3 2 a
4 2 b
5 3 a
6 3 b
7 NA a
8 NA b
combn( c( "a", "b", "c", "d", "e" ), m = 2, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"
[2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
combn( c( "a", "b", "c", "d", "e" ), m = 3, simplify = TRUE )
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "a" "a" "a" "a" "a" "a" "b" "b" "b" "c"
[2,] "b" "b" "b" "c" "c" "d" "c" "c" "d" "d"
[3,] "c" "d" "e" "d" "e" "e" "d" "e" "e" "e"
Copyright © 2022 Biomedical Data Sciences (BDS) | LUMC